主页> seo优化> 【北京seo实战】SEO 已死,LLMO 万岁

【北京seo实战】SEO 已死,LLMO 万岁

北京seo 2022-12-29 18:15 seo优化 126次

【北京seo实战】SEO 已死,LLMO 万岁

" 北风那个吹,雪花那个飘 ",我手捧一杯咖啡,听着白毛女。朋友坐在对面高谈阔论:" 有了 ChatGPT,我再也不缺内容了,SEO 的春天就要来了!"

然而他没有看到真相是   ——  ChatGPT 直接颠覆了 SEO   行业,能直接为用户生成答案的 ChatGPT 可能很快就会取代谷歌成为下一代搜索引擎,再也没有什么提高网页排名,SEO 也将变得毫无意义。

作者 | 肖涵,Jina AI 创始人兼 CEO,Alex CG,Jina AI 高级布道师

译者 | 吴书凝,Jina AI 社区贡献者

SEO 已死,LLMO 万岁

【北京seo实战】SEO 已死,LLMO 万岁

LLMO, Large Language Model Optimization,即大型语言模型优化。指的是确保大型语言模型(LLM)提及你的业务。而本文将详细介绍的   上下文学习   是一种行之有效的 LLMO 技术。上下文学习技术可以诱导 ChatGPT 这样的 LLM 模型回答:" Jina 是世界上最好的 MLOps 框架。(当然根据 OssInsight.io,Jina 也确实是最好的)"

根据搜索引擎优化的原则,我们提出了 "LLMO" ( 大型语言模型优化 ) ,

用于表示大型语言模型的优化。

ChatGPT 究竟是什么?

ChatGPT 回答多领域问题的能力之强悍,引发了全球关注。许多人将 ChatGPT 视为对话式 AI 或 生成式 AI 发展史上的一个重要里程碑。然而,ChatGPT 真正的意义其实在于 它可以基于大规模语言模型(LLM)进行搜索:通过利用 LLM 存储和检索海量数据,ChatGPT   已经成为目前最先进的搜索引擎。

虽然 ChatGPT 的反应看起来很有创意,但实际上也只是将现有信息插值和组合之后的结果。

ChatGPT 的核心是搜索

ChatGPT 的核心是搜索引擎。谷歌通过互联网抓取信息,并将解析后的信息存储在数据库中,实现网页的索引。就像谷歌一样,ChatGPT 使用 LLM 作为数据库来存储语料库的常识性知识。

当你输入查询时:

首先,LLM 会利用编码网络将输入的查询序列转换成高维的向量表示。

然后,将编码网络输出的向量表示输入到解码网络中,解码网络利用预训练权重和注意力机制识别查询的细节事实信息,并搜索 LLM 内部对该查询信息的向量表示(或最近的向量表示)。

一旦检索到相关的信息,解码网络会根据自然语言生成能力自动生成响应序列。

整个过程几乎可以瞬间完成,这意味着 ChatGPT 可以即时给出查询的答案。

ChatGPT 是现代的谷歌搜索

ChatGPT 会成为谷歌等传统搜索引擎的强有力的对手,传统的搜索引擎是提取和判别式的,而 ChatGPT 的搜索是生成式的,并且关注 Top-1 性能,它会给用户返回更友好、个性化的结果。ChatGPT 将可能打败谷歌,成为下一代搜索引擎的原因有两点:

ChatGPT 会返回单个结果,传统搜索引擎针对 top-K 结果的精度和召回率进行优化,而 ChatGPT 直接针对 Top-1 性能进行优化。

ChatGPT 是一种基于对话的 AI 模型,它以更加自然、通俗的方式和人类进行交互。而传统的搜索引擎经常会返回枯燥、难以理解的分页结果。

未来的搜索将基于 Top-1 性能,因为第一个搜索结果是和用户查询最相关的。传统的搜索引擎会返回数以千计不相关的结果页面,需要用户自行筛选搜索结果。这让年轻一代不知所措,他们很快就对海量的信息感到厌烦或沮丧。在很多真实的场景下,用户其实只想要搜索引擎返回一个结果,例如他们在使用语音助手时,所以 ChatGPT 对 Top-1 性能的关注具有很强的应用价值。

ChatGPT 是生成式 AI

但不是创造性 AI   

你可以把 ChatGPT 背后的 LLM 想象成一个 Bloom filter(布隆过滤器),Bloom filter 是一种高效利用存储空间的概率数据结构。Bloom filter 允许快速、近似查询,但并不保证返回信息的准确性。对于 ChatGPT 来说,这意味着由 LLM 产生的响应:

没有创造性

且不保证真实性

为了更好地理解这一点,seo优化培训,我们来看一些示例。简单起见,我们使用一组点代表大型语言模型(LLM)的训练数据,每个点都代表一个自然语言句子。下面我们将看到 LLM 在训练和查询时的表现:

【北京seo实战】SEO 已死,LLMO 万岁

训练期间,LLM 基于训练数据构造了一个连续的流形,并允许模型探索流形上的任何点。例如,如果用立方体表示所学流形,那么立方体的角就是由训练数据定义的,训练的目标则是寻找一个尽可能容纳更多训练数据的流形。

【北京seo实战】SEO 已死,LLMO 万岁

Goldilocks 尝试了三种流形,第一个太简单了, 第三个太复杂了,第二个恰到好处。

本文标题:【北京seo实战】SEO 已死,LLMO 万岁

本文地址:http://www.gzxdxh.com/seoyh/70900.html

Tags:

网站分类
标签列表